A Dynamic 3D Tumor Spheroid Chip Enables More Accurate Nanomedicine Uptake Evaluation

A Dynamic 3D Tumor Spheroid Chip Enables More Accurate Nanomedicine Uptake Evaluation

  一种多肿瘤培养芯片(MTC-chip)以模拟实体瘤及动态流体运输,用于更好地研究纳米粒子(NPs)的体内渗透。

Introduction

  通过提供抗降解保护、增强通透性和滞留效应的纳米颗粒(NPs)的快速发展显著改善了药物转运的肿瘤治疗。由于传统的细胞模型无法完全复制体内的生理环境(如缺乏流体流动、脉管系统、细胞外基质等),因此体外和体内研究之间在细胞摄取效率和纳米颗粒的毒性方面仍然存在巨大差异,纳米医学在临床试验中仅取得了有限的治疗效果。

  • 一些纳米颗粒很容易聚集或沉淀,从而增加粘附细胞表面纳米颗粒的浓度。
  • 静态模型不能反映动态流动系统下纳米颗粒的渗透特性,需要将模拟的肿瘤间隙流集成到三维肿瘤评估系统中。
  • 剪切应力会导致细胞损伤并改变纳米材料的吸收,需要考虑减少微流控装置中的剪切应力。

  在本文中,作者制造了一个多肿瘤培养芯片(MTC-chip)用于生产大量三维肿瘤球,并在MTC芯片中加入了动态用药系统,以评估在间接剪切力下乳腺癌MCF-7球体中介孔二氧化硅纳米粒子(MSN)的细胞摄取。最近,MSNs已被用作癌症治疗的多功能纳米递送系统,其生物降解性以及相容性已在动物研究中得到证实。作者证明了MTC-chip研究MSNs渗透的能力,并发现:

  • 在相同剂量下,连续给药优于瞬时给药;
  • 三维动态条件下,球体内细胞摄取的尺寸效应小于二维静态模型;
  • 透明质酸酶(hyaluronidase, HAase)增强了大尺寸MSNs在肿瘤球中的渗透。

Microfluidic Chip Design and Operation

  • (a)用于NPs渗透研究的MTC-chip。
  • (b)三层微流控装置的示意图与光学显微图片。微通道的深度大约20 μm,微孔深度大约150 μm。
  • (c)整个装置照片。
  • (d)芯片上三维培养流程。

Microfluidic Cell Culture

  • (a)第1、3、7天培养的MCF-7肿瘤球的光学图像和尺寸。
  • (b)芯片上三维肿瘤的尺寸生长。
  • (c)芯片上三维肿瘤的尺寸分布。
  • (d)芯片上160个MCF-7肿瘤的白光图和20个充满E-钙黏蛋白(E-CAD)染色肿瘤球的微孔的图像分析。E-CAD与保持MCF-7细胞-细胞连接有关,可以发现处于高水平表达。
  • (e)用Calcein-AM/PI的活/死(绿/红)染色可视化肿瘤细胞的荧光图像。
  • (f)F-肌动蛋白(红)和核(蓝)染色以展示细胞骨架的荧光图像。上述结果证实了微流控系统制备的肿瘤球的高活力和完整性。

Effect of the Route of Administration on NPs Penetration

  • (a)在带有三通混合阀入口的芯片上应用不同的MSNs给药途径的透视图。
  • (b)通过静脉输液或静脉注射,估计芯片上微通道中MSN90的浓度(CONC)以及MSNs在肿瘤球中的粒子动力学。
  • (c)NPs的归一化荧光强度分布与肿瘤球中心距离的关系。
  • (d)MSN90在一个肿瘤球中通过静脉输液或静脉注射渗透的时间推移图像。
  • (e)MSN90在一个肿瘤球中通过静脉输液或静脉注射渗透的合并图像。
  • (f)基于(g)的荧光图像绘制的一个MCF-7肿瘤球的表面图像。
  • (g)MSN90在八个肿瘤球中,经不同给药途径后的细胞摄取情况。由此可知持续给药可导致在肿瘤球中更深更强的渗透。瞬时给药与MSNs在肿瘤球中的保留关系不大,而连续给药则有利于MSNs的积累。

Effect of the Size of MSNs on NPs Penetration after a Single Dose Continuous Administration NPs Delivery

  • (a)MSNs内化后细胞的平均荧光强度。
  • (b)MSNs加载后NPs的归一化荧光强度分布与肿瘤球中心距离的函数。表明与大尺寸的MSNs相比,小尺寸的MSNs更倾向于在肿瘤球中积累。
  • (c) MSNs在一个三维肿瘤中渗透的合并图像。
  • (d)基于(e)的荧光图像绘制的一个MCF-7肿瘤球的表面图像。
  • (e)八个肿瘤球中不同尺寸MSNs的细胞吸收。 表明较小的MSNs在4小时内更接近中心,而大尺寸MSNs无法有效扩散到三维肿瘤中。但在静态孵育下的二维/三维细胞中,细胞几乎不可能摄取任何大尺寸的MSNs。

Effect of ECM Pretreatment of Tumor Spheroids on MSN300 Accumulation

  尽管直径较大的纳米载体渗透性较差以及细胞摄取率较低,但更高的载药量和更好的稳定性使研究人员不愿放弃这些大尺寸纳米载体。如今,各种方法如NPs的表面共轭已被应用于增强这些大尺寸NPs的肿瘤渗透;与基质调节剂共同给药,可以通过药理作用调节肿瘤微环境,已被广泛应用于临床研究中增强肿瘤渗透。该微流控装置可以在一定程度上构建三维肿瘤及其微环境,可用于测试此类药物。

  • (a)实验设计示意图。在三维肿瘤形成后,MCF-7肿瘤球在加载MSNs前用不同的ECM修饰剂处理2天。
  • (b)MSNs内化后细胞的平均荧光强度。透明质酸酶可作为ECM降解酶并降解水凝胶,显著增强MSN300的肿瘤渗透。
  • (c)MSNs加载后NPs的归一化荧光强度分布与肿瘤球中心距离的函数。
  • (d)MSNs在一个三维肿瘤中渗透的合并图像。
  • (e)基于(f)的荧光图像绘制的一个MCF-7肿瘤球的表面图像。
  • (f)八个肿瘤球对MSNs的细胞吸收。由于报道中氯沙坦和法舒地尔可以增加体内NPs的积累,由此假设透明质酸酶对ECM有直接影响,这在MTC芯片中可能更有效,而氯沙坦和法舒地尔只能对ECM产生间接影响。

Conclusions

  提出了一种高通量、仿生和动态的给药系统,可以在芯片上生产许多MCF-7肿瘤球。三维多细胞肿瘤球(3D-MCTS)、ECM和间质液系统被成功集成到微流体平台中,可以提供更接近TME的生理条件,用于探索NPs渗透。以前的研究已经通过微流控技术有效地实现了三维培养,但很少有人能够在这种系统中进行NPs的渗透以及动态用药下NPs的细胞摄取。作者证明了:

  • 给药途径可以决定MSNs的渗透率,纳米药物的连续给药导致肿瘤球中NPs的积累比瞬时给药更大;
  • 尺寸对MSNs细胞摄取的影响也适用于 3D 流动条件。然而传统的静态孵育系统被认为夸大了MSNs大小对细胞摄取的作用;
  • 透明质酸酶可直接降解肿瘤胶原含量,增强大尺寸MSNs在肿瘤球体中的渗透,而这种改善可能会被MTC芯片检测到,因为芯片上的TME系统可以部分复制体内微环境。

Reference

Zhuang J, Zhang J, Wu M, et al. A Dynamic 3D Tumor Spheroid Chip Enables More Accurate Nanomedicine Uptake Evaluation[J]. Advanced Science, 2019, 6(22): 1901462.

评论

3D cell culture 3D cell culturing 3D cell microarrays 3D culture 3D culture model 3D printing 3D spheroid 3D tumor culture 3D tumors 3D vascular mapping ACT ADV AUTODESK Abdominal wall defects Acoustofluidics Adipocyte Adipogenesis Adoptive cell therapy AirPods Alginate Anticancer Anticancer agents Anticancer drugs Apple Apriori Association Analysis August AutoCAD Autodock Vina Bio-inspired systems Biochannels Bioengineering Bioinspired Biological physics Biomarkers Biomaterial Biomaterials Biomimetic materials Biomimetics Bioprinting Blood purification Blood-brain barrier Bone regeneration Breast cancer Breast cancer cells Breast neoplasms CM1860 CRISPR/Cas9 system CSS CTC isolation CTCs Cancer Cancer angiogenesis Cancer cell invasion Cancer immunity Cancer immunotherapy Cancer metabolism Cancer metastasis Cancer models Cancer screening Cancer stem cells Cell adhesion Cell arrays Cell assembly Cell clusters Cell culture Cell culture techniques Cell mechanical stimulation Cell morphology Cell trapping Cell-bead pairing Cell-cell interaction Cell-laden gelatin methacrylate Cellular uptake Cell−cell interaction Cervical cancer Cheminformatics Chemotherapy Chimeric antigen receptor-T cells Chip interface Circulating tumor cells Clinical diagnostics Cmder Co-culture Coculture Colon Colorectal cancer Combinatorial drug screening Combinatorial drug testing Compartmentalized devices Confined migration Continuous flow Convolutional neural network Cooking Crawler Cryostat Curved geometry Cytokine detection Cytometry Cytotoxicity Cytotoxicity assay DESeq DNA tensioners Data Mining Deep learning Deformability Delaunay triangulation Detective story Diabetic wound healing Diagnostics Dielectrophoresis Differentiation Digital microfluidics Direct reprogramming Discrimination of heterogenic CTCs Django Double emulsion microfluidics Droplet Droplet microfluidics Droplets generation Droplet‐based microfluidics Drug combination Drug efficacy evaluation Drug evaluation Drug metabolism Drug resistance Drug resistance screening Drug screening Drug testing Dual isolation and profiling Dynamic culture Earphone Efficiency Efficiency of encapsulation Elastomers Embedded 3D bioprinting Encapsulation Endothelial cell Endothelial cells English Environmental hazard assessment Epithelial–mesenchymal transition Euclidean distance Exosome biogenesis Exosomes Experiment Extracellular vesicles FC40 FP-growth Fabrication Fast prototyping Fibroblasts Fibrous strands Fiddler Flask Flow rates Fluorescence‐activated cell sorting Functional drug testing GEO Galgame Game Gene Expression Profiling Gene delivery Gene expression profiling Gene targetic Genetic association Gene‐editing Gigabyte Glypican-1 GoldenDict Google Translate Gradient generator Growth factor G‐CSF HBEXO-Chip HTML Hanging drop Head and neck cancer Hectorite nanoclay Hepatic models Hepatocytes Heterotypic tumor HiPSCs High throughput analyses High-throughput High-throughput drug screening High-throughput screening assays High‐throughput methods Histopathology Human neural stem cells Human skin equivalent Hydrogel Hydrogel hypoxia Hydrogels ImageJ Immune checkpoint blockade Immune-cell infiltration Immunoassay Immunological surveillance Immunotherapy In vitro tests In vivo mimicking Induced hepatocytes Innervation Insulin resistance Insulin signaling Interferon‐gamma Intestinal stem cells Intracellular delivery Intratumoral heterogeneity JRPG Jaccard coefficient JavaScript July June KNN Kidney-on-a-chip Lab-on-a-chip Laptop Large scale Lattice resoning Leica Leukapheresis Link Lipid metabolism Liquid biopsy Literature Liver Liver microenvironment Liver spheroid Luminal mechanics Lung cells MOE Machine Learning Machine learning Macro Macromolecule delivery Macroporous microgel scaffolds Magnetic field Magnetic sorting Malignant potential Mammary tumor organoids Manhattan distance Manual Materials science May Mechanical forces Melanoma Mesenchymal stem cells Mesoporous silica particles (MSNs) Metastasis Microassembly Microcapsule Microcontact printing Microdroplets Microenvironment Microfluidic array Microfluidic chips Microfluidic device Microfluidic droplet Microfluidic organ-on-a chip Microfluidic organ-on-a-chip Microfluidic patterning Microfluidic screening Microfluidic tumor models Microfluidic-blow-spinning Microfluidics Microneedles Micropatterning Microtexture Microvascular Microvascular networks Microvasculatures Microwells Mini-guts Mirco-droplets Molecular docking Molecular imprinting Monolith Monthly Multi-Size 3D tumors Multi-organoid-on-chip Multicellular spheroids Multicellular systems Multicellular tumor aggregates Multi‐step cascade reactions Myeloid-derived suppressor cells NK cell NanoZoomer Nanomaterials Nanoparticle delivery Nanoparticle drug delivery Nanoparticles Nanowell Natural killer cells Neural progenitor cell Neuroblastoma Neuronal cell Neurons Nintendo Nissl body Node.js On-Chip orthogonal Analysis OpenBabel Organ-on-a-chip Organ-on-a-chip devices Organically modified ceramics Organoids Organ‐on‐a‐chip Osteochondral interface Oxygen control Oxygen gradients Oxygen microenvironments PDA-modified lung scaffolds PDMS PTX‐loaded liposomes Pain relief Pancreatic cancer Pancreatic ductal adenocarcinoma Pancreatic islet Pathology Patient-derived organoid Patient-derived tumor model Patterning Pearl powder Pearson coefficient Penetralium Perfusable Personalized medicine Photocytotoxicity Photodynamic therapy (PDT) Physiological geometry Pluronic F127 Pneumatic valve Poetry Polymer giant unilamellar vesicles Polystyrene PowerShell Precision medicine Preclinical models Premetastatic niche Primary cell transfection Printing Protein patterning Protein secretion Pubmed PyMOL Pybel Pytesseract Python Quasi-static hydrodynamic capture R RDKit RNAi nanomedicine RPG Reactive oxygen species Reagents preparation Resistance Review Rod-shaped microgels STRING Selective isolation Self-assembly Self-healing hydrogel September Signal transduction Silk-collagen biomaterial composite Similarity Single cell Single cells Single molecule Single-cell Single-cell RNA sequencing Single‐cell analysis Single‐cell printing Size exclusion Skin regeneration Soft lithography Softstar Spheroids Spheroids-on-chips Staining StarBase Stem cells Sub-Poisson distribution Supramolecular chemistry Surface chemistry Surface modification Switch T cell function TCGA Tanimoto coefficient The Millennium Destiny The Wind Road Thin gel Tissue engineering Transcriptome Transfection Transient receptor potential channel modulators Tropism Tubulogenesis Tumor environmental Tumor exosomes Tumor growth and invasion Tumor immunotherapy Tumor metastasis Tumor microenvironment Tumor response Tumor sizes Tumor spheroid Tumor-on-a-chip Tumorsphere Tumors‐on‐a‐chip Type 2 diabetes mellitus Ultrasensitive detection Unboxing Underlying mechanism Vascularization Vascularized model Vasculature Visual novel Wettability Windows Terminal Word Writing Wuxia Xenoblade Chronicles Xin dynasty XuanYuan Sword Youdao cnpm fsevents miR-125b-5p miR-214-3p miRNA signature miRanda npm
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×